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A dynamic scaling ansatz for the approach to the self-organized critical �SOC� regime is proposed and tested
by means of extensive simulations applied to the Bak–Sneppen model �BS�, which exhibits robust SOC
behavior. Considering the short-time scaling behavior of the density of sites ���t�� below the critical value, it
is shown that �i� starting the dynamics with configurations such that ��t=0�→0 one observes an initial
increase of the density with exponent �=0.12�2�; �ii� using initial configurations with ��t=0�→1, the density
decays with exponent �=0.47�2�. It is also shown that the temporal autocorrelation decays with exponent
Ca=0.35�2�. Using these dynamically determined critical exponents and suitable scaling relationships, all
known exponents of the BS model can be obtained, e.g., the dynamical exponent z=2.10�5�, the mass dimen-
sion exponent D=2.42�5�, and the exponent of all returns of the activity �ALL=0.39�2�, in excellent agreement
with values already accepted and obtained within the SOC regime.
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Nearly two decades ago, Bak et al. �1� proposed the cel-
ebrated concept of self-organized criticality �SOC� in order
to describe complex systems capable of evolving toward a
critical state without the need of tuning any control param-
eter. This is in contrast to the case of standard critical behav-
ior where critical points are reached by tuning a suitable
control parameter �temperature, pressure, etc.�. The study of
SOC behavior has attracted huge attention due to its ubiquity
in a great variety of systems in the fields of biology �evolu-
tionary models�, geology �earthquakes�, physics �flick noise�,
zoology �prey predators and herds�, chemistry �chemical re-
actions�, social sciences �collective behavior of individuals�,
ecology �forest fire�, neurology �neural networks�, etc. �2,3�.

In spite of the considerable effort invested in the study of
SOC, it is surprising that little attention has been drawn to
the understanding of the dynamic approach to the SOC re-
gime when a system starts far from it. This issue is relevant
for a comprehensive description of the phenomena since the
SOC state behaves as an attractor of the dynamics. For the
case of standard criticality, the existence of a “short-time”
universal dynamic scaling form for model A has only re-
cently been established. In fact, according to a field-
theoretical analysis followed by an � expansion �4�, which
has subsequently been extensively confirmed by means of
numerical simulations �5�, a short-time universal dynamic
evolution that sets in right after a time scale tmic, which is
large enough in the microscopic sense but still very small in
the macroscopic one, has been identified. It is worth men-
tioning that by means of short-time measurement one cannot
only evaluate the dynamic exponent z and relevant �static�
exponents, but also the exponent ��� describing the scaling
behavior of the initial increase of the order parameter of
model A.

Within this context, the aim of this work is to propose a
dynamic scaling ansatz to describe the approach to the SOC
state. Furthermore, our proposal is validated by extensive
simulations of the evolutionary Bak–Sneppen model, show-
ing that the dynamic approach to the SOC state is in fact

critical and its study allows us to evaluate exponents that are
in excellent agreement with independent measurements per-
formed within the SOC regime.

The Bak-Sneppen �BS� model is aimed at simulating the
evolution of life through individual mutations and their rela-
tion in the food chain �6–9�. Each site of a d-dimensional
array of side L represents a species whose fitness is given by
a random number f taken from a uniform distribution P�f� in
the range �0,1�. The system evolves according to the follow-
ing rules: �1� The site with the smallest fitness is chosen. �2�
A new fitness is assigned to that site, i.e., a random number
taken from P. This rule is based on the Darwinian survival
principle, i.e., the species with less fitness are replaced or
mutated. �3� At the same time, the fitness of the nearest-
neighbor sites are changed. This rule simulates the impact of
the mutation over the environment.

The BS model is the archetype example of extremal dy-
namics and perhaps, it is the simplest example of a system
exhibiting a robust SOC behavior. We will perform simula-
tions in d=1, assuming periodic boundary conditions. It is
well known that the system reaches a stationary �SOC� state
where the density � of sites with fitness below a critical value
is negligible �f � fc, with fc=0.667 02�3��, but it is uniform
above fc �9�. Within the SOC state, the BS model exhibits
scale-free evolutionary avalanches and punctuated equilib-
rium �6,9�.

The dynamic scaling ansatz. The short-time dynamic scal-
ing form has originally been formulated for the Ising model
with two state spins �5�. In the absence of magnetic fields,
the Ising magnet exhibits a second-order phase transition
when the temperature is tuned at the critical point �i.e., stan-
dard critical behavior�. By analogy, we also considered that
in the BS model, each site can only be in one of two possible
states 	i: occupied �	i=1� when its fitness is below fc, or
empty �	i=0� when its fitness is above fc. Furthermore, since
the magnetization goes to zero at the critical temperature of
the Ising system, while in the BS model the density of sites �
also vanishes when the SOC regime is reached �9�, it is also
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reasonable to propose a scaling ansatz for the density. How-
ever, it is worth mentioning that the BS model lacks a control
parameter, such as the temperature for the Ising model.
Hence, in the limit L→
, the proposed scaling reads

��t,�0� = b−���b−zt,bx0�0� , �1�

where �0 is the initial density, z is the dynamic exponent, x0
is the exponent of the rescaling of �0, � is an exponent, and
b is a scaling variable.

Simulation results and discussion. Computer simulations
were performed in ensembles of 103 different systems having
the same initial density of sites with fitness below fc. Notice
that usually the site with the smallest fitness value at time t is
called the “active site.” Figure 1 shows the temporal evolu-
tion of density ��t ,�0� as obtained for different values of �0.
Three different regimes can be distinguished: �i� A short-time
regime �0� t� tmax�103�, which holds for low initial densi-
ties �0�0.1, where the density exhibits an initial increase.
Since the value of the “effective” exponent slightly depends
on �0, as usually �5�, we have performed an extrapolation
obtaining �=0.12�2� in the �0→0 limit; �ii� an intermediate-
time regime �tmax� t� tstat�106� where the density de-
creases also following a power law with exponent
�=0.47�2�; and �iii� a long-time regime �tstat� t�, where the
system arrives at a stationary state with a constant average
density �stat.

In order to understand the observed behavior it is useful to
analyze first a simulation started with a single site
��0=1/L�. One observes �not shown here for the sake of
space� a single avalanche and the density increases mono-
tonically with exponent �, as in the case of Fig. 1 for
�0→0. The spatiotemporal evolution of the avalanche is de-
limited according to

r�t� � t1/D, �2�

where D=2.43�1� �9� is the mass dimension exponent.
Then, it is convenient to consider the evolution of ne epi-

demics started simultaneously with a separation of re empty
sites between them. Two neighbor epidemics collide when
each of them expands its activity over re /2 sites, on average.
Then, the border between them disappears, leading to a
single epidemic. So, according to Eq. �2�, this requires a time

of order te��re /2�D, hence for the collision of ne epidemics
the time required is of order t�nete. Then, one expects an
initial increase of the density until tmax, given by

tmax � ne� re

2
�D

. �3�

Now, for an initial random distribution, one has that
ne=L�0 and the distance between particles at t=0 is of order
re�1/�0. Then, Eq. �3� becomes

tmax � �0
1−D. �4�

Also, the system reaches the stationary state for a time of
order tstat�LD �9�. In the thermodynamic limit �stat→0 and
tstat→
.

It is worth mentioning that the time t used in this work is
a discrete sequential time. An alternative definition corre-
sponds to the parallel time t	, usually employed to define the
dynamic exponent z according to

t	 � rz. �5�

The unit of parallel time is defined as the average number of
actualization steps that have to be performed to change the
state of all the occupied sites �n�t��, then

t → t + 1 and t	 → t	 +
1

n�t�
. �6�

From these definitions one has t	 � t1−�, which inserted in
Eqs. �5� and �2�, yields

1 − � =
z

D
. �7�

The time-scaling behavior of the density can be obtained
from Eq. �1� by replacing b= t1/z, which yields

��t,�0� = t−�/z��tx0/z�0� , �8�

where � is a scaling function. For �0→1 and within the
intermediate time regime, ��t� becomes independent of �0

�see Fig. 1�, thus assuming x0 /z0 one has ��tx0/z�0�1�
=const, which holds for t� tmax��0

−z/x0. Then, tmax sets the
time scale for the initial increase of the density, as shown in
Fig. 1 �10�. Furthermore, according to Eq. �4� the following
relationship between exponents should hold:

D − 1 = z/x0. �9�

Also, � should decrease according to

��t� � t−�, �10�

with �
� /z=0.47�2�. On the other hand, for �0→0 and
within the short-time regime �t� tmax, t→0� the dependence
of � on the initial density becomes relevant. Thus we as-
sume ��x��xu, where u is an exponent. Hence, replacing in
Eq. �8�, one has

��t,�0� = �0
ut�, �11�

where �=−�+u�x0 /z�. So, �=0.12�2� is the exponent that
describes the initial increase of the density within the short-
time dynamic critical regime of the BS model.

FIG. 1. Temporal evolution of average density for several values
of initial density �0 as listed in the figure.
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In order to calculate u, the dependence of the density on
�0 �i.e., ���0�� was measured at different times, as shown in
Fig. 2�a�. Also, the scaling ansatz suggested by Eq. �11� is
shown in Fig. 2�b�. The observed data collapse is satisfactory
and the exponent u=0.87�3� was measured.

On the other hand, replacing x0 /z=�+� /u in Eq. �8� one
obtains

��t,�0� = t−����0t�+�/u� . �12�

The shape of the scaling function � is shown in Fig. 3, and
the excellent data collapse obtained by plotting the data al-
ready shown in Fig. 1 strongly supports the formulated scal-
ing hypothesis and the calculated exponents. In fact, the best
fit of the data obtained, for �0→0, gives u=0.89�3� �see
dotted line covering two decades in Fig. 3� that is in agree-
ment with the preliminary estimation already performed with
the data shown in Fig. 2 �covering less than one decade�.

Also, the scaling of the initial density can also be obtained
by replacing b=�0

−1/x0 in Eq. �1�, giving

��t,�0� = �0
�/x0��t�0

z/x0� , �13�

where � is a scaling function that, for t→0 and �0→0, can
be approximated by ��x�→xv �x→0�, where v is an expo-
nent. Thus one obtains

��t,�0� = �0
�/x0+v�z/x0�tv. �14�

Now, by comparing Eq. �14� with Eq. �13� it follows that
v=� and u=� /x0+v�z /x0�. Hence,

�

x0
=

�/z

x0/z
=

u�

� + �
. �15�

Then, using x0 /z=�+� /u and Eq. �15�, one has that Eq.
�13� can be written in terms of already measured exponents,
so

��t,�0� = �0
u�/�+���t�0

u/�+�� . �16�

Figure 4 shows plots of the numerical data performed
according to Eq. �16�. The shape of the scaling function �
can be observed and the collapse of the curves also supports
the formulated scaling hypothesis.

Valuable information on the dynamic behavior of the sys-
tem can also be obtained by measuring the temporal auto-
correlation of the state of the site �A�t , t0�, averaged over all
sites� that is expected to decay according to a power law
�4,5�, namely

A�t0,t� = �	i�t0�	i�t�� − �	i�t0���	i�t�� � t−Ca, �17�

where 	i�t�=1,0 is the state of the site at time t. Also �5�

Ca = d/z − � . �18�

Figure 5 shows log-log plots of the autocorrelation versus
t obtained using very low initial densities since Eq. �17� is
expected to hold for �0→0. From these plots one determines
Ca=0.35�2�, and by replacing this value in Eq. �18� the dy-
namic exponent z=2.13�5� is obtained. Then, by using Eq.
�7� we obtain D=2.42�5�. These exponent values are in
agreement with those already published in the literature that
were obtained within the SOC regime �9�, i.e., z=2.1�5� and

FIG. 2. �a� Log-log plots of � vs �0 obtained for times t=10, 20,
50, 100, 200, and 500 �from bottom to top�. �b� Scaling plot of the
curves shown in �a� using Eq. �11�.

FIG. 3. Scaling plot of the data shown in Fig. 1 obtained by
using Eq. �12� for the time-scaling behavior. The dotted line—
slightly shifted up for the sake of clarity—with slope u=0.89 cor-
responds to the best fit of the data obtained for the lowest density.

FIG. 4. Scaling plot of the data shown in Fig. 1 obtained by
using Eq. �16� for the scaling of the initial density.
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D=2.43�1�. Furthermore, Eq. �9� can be tested, yielding
D−1=1.42�5� �left-hand side� and z /x0=u / ��+��=1.47�5�
�right-hand side�.

Now, we can discuss the relationship between short-time
dynamic measurements and the behavior of relevant distri-
butions characterizing return times of the activity to a given
point in space. In fact, the distribution PALL�0, t	� is the prob-
ability for the activity at time t	 to revisit a site that was
visited at time 0 and is often referred to as the distribution of
all return times �9�. For t	 �1 such a distribution decays as a
power law of the form PALL�0, t	�� t	

−�ALL, where �ALL is the
“lifetime” exponent for all returns of the activity �9�. Then,
considering that A�0, t� is the probability that a given site
being occupied at t=0 returns to be occupied at time t, one
has that A�0, t�� PALL�0, t	� since a site can change its state
only when such a site, or any of its two neighbors, is visited

by the activity. Then, by recalling that we are working in
terms of the discrete sequential time t such as t	 � t1−� �11�,
one has

A�t,0� � t−�1−���ALL, with �ALL 

Ca

1 − �
. �19�

By means of short-time dynamic measurements we have
obtained �ALL=0.39�4�, in excellent agreement with the
value calculated within the stationary state �t106�, given
by �ALL=0.42�2� �9�.

In summary, the proposed dynamic scaling ansatz for the
approach to the stationary state generalizes the concepts pre-
viously developed to describe the critical dynamics of model
A for systems exhibiting SOC. The dynamic scaling behavior
was tested with the BS model showing that it holds for the
density of sites with fitness below the critical one. Remark-
ably, the exponents calculated by using the dynamic ap-
proach are in excellent agreement with those already mea-
sured within the stationary state. Using well-established
relationships between exponents and considering that only
two of them are basic, the dynamic measurement allows the
self-consistent evaluation of all exponents of the BS model.
So, we have shown that the dynamic approach to the SOC
regime is indeed critical and it is governed by the dynamic
exponent z, standard exponents �i.e., those available from
stationary determinations�, and by the exponent � that is in-
troduced to describe the initial increase of the density. It is
worth emphasizing that the criticality observed in the ap-
proach to the SOC state not only addresses new and chal-
lenging theoretical aspects of SOC behavior, but also is of
great practical importance for the determination of relevant
exponents.
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